~~

Problem Set 8: Complex Numbers

<u>Goal</u>: Become familiar with math operations using complex numbers; see how complex numbers can be used to show the frequency response of an RC circuit.

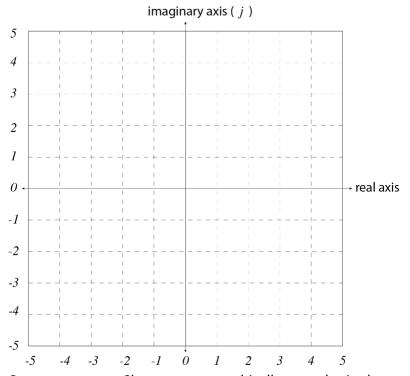
Note: This PSet will be much easier if you have already watched the lectures on complex numbers.

Deliverable: This worksheet and two plots.

Part I: Basic Operations with complex numbers

For the following, take $z_1 = 1 + j$ and $z_2 = -3 + 4j$.

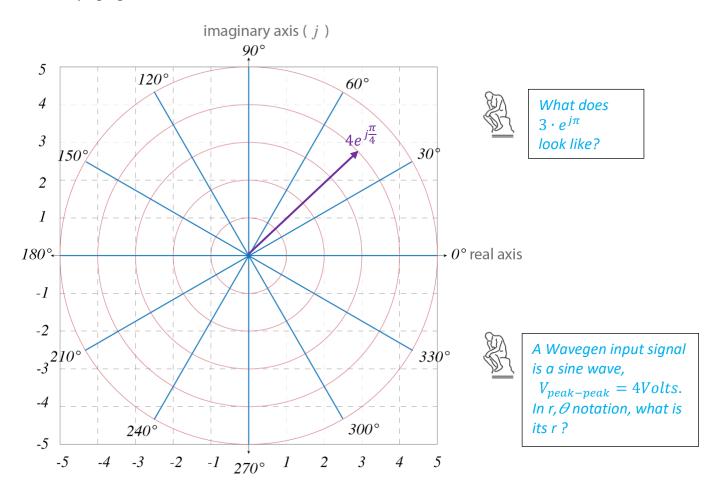
- 1. Convert z_1 and z_2 to polar and exponential notation (find r, θ).
- 2. Plot z_1 and z_2 on the complex plane below.



- 3. Compute $z_1 + z_2$. Show $z_1 + z_2$. graphically on a plot in the complex plane from 2.
- 4. Compute z_1 z_2 . Show z_1 z_2 . graphically on a plot in the complex plan from 2.
- 5. Compute $z_1 z_2$. Repeat the computation using a different notation.
- 6. Compute ${}^{Z_1}/_{Z_2}$ using complex notation. Compute ${}^{Z_2}/_{Z_1}$ and compare.
- 7. Compute z_1^4

Part II: Plotting complex numbers

Complex numbers using **polar notation** are super useful for illustrating how a circuit responds to time-varying signals.



The **polar coordinates** (above grid of red & blue) make use of a special property of the **exponential** *function* when it operates on $j(=\sqrt{-1})$. You may have seen this function notated (equivalently) as:

 $e^{j\theta}$, exp $(j\theta)$, or $e^{i\theta}$

where θ represents an angle in radians (Recall that π radians = 180°).

The amazing property of $e^{j\theta}$ is known as Euler's formula (section 6.3 in your book):

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

If θ varies with a frequency, ω , $\theta = \omega \cdot t$, what would $e^{j\omega t}$ look like in time?

Click this <u>link</u> ¹ to see. There is more info on page 4 for those who are interested.

Recall from Figure 6.3 that if we represent our cosine voltage input to a **low-pass filter** with polar notation,

 $V_{in} e^{j\omega t}$ $R \bigvee_{eut} e^{j\omega t}$ $C \int I(t)$

 $V_{in}(t) = V_{in} \cdot e^{j\omega t}$ And V_{in} represents a complex number.

And remember that because the R and C are in series, the time varying current passing through both will be the same, we get,

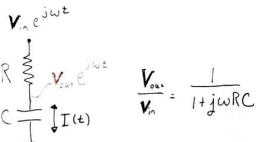
$$\frac{V_{in}(t) - V_{out}(t)}{R} = C \frac{dV_{out}(t)}{dt}$$

solving for $\frac{V_{out}}{V_{in}}$,

and, rearranged a bit,

$$\boldsymbol{V}_{in} \cdot \boldsymbol{e}^{j\omega t} - \boldsymbol{V}_{out} \cdot \boldsymbol{e}^{j\omega t} = RCj\omega \boldsymbol{V}_{out} \cdot \boldsymbol{e}^{j\omega t}$$

Or



Let's let RC=1 second and $z_3 = \frac{1}{1+j\omega}$ And $z_4 = \frac{j\omega}{1+j\omega}$ Convert z_3 and z_4 to r, θ notation.

Plot the magnitude of r of z_3 and z_4 as a function of ω on a log-log scale. Let ω^* vary from 10^{-3} to 10^3 . Plot θ in degrees for z_3 and z_4 as a function of ω on a semilog scale. Let ω vary from 10^{-3} to 10^3 .

*In Matlab, you can use the command: y= logspace(-3,3) to generate a logarithmically-spaced vector, y, that spans 10⁻³ to 10³.

Knowing that z_3 and z_4 represent the $\frac{V_{out}}{V_{in}}$ of low- and high-pass filters, what do you expect the graphs to look like?

